第84章 计算机会议上震撼的数学论证!(2/2)
作者:不吃小南瓜
“那是非常有意义的东西!”
在不断谈论的过程中,也有好多人在进行着科普,阿廷猜想并不是广为人知的数学猜想,多数学者也只是了解内容,很少有人专门去做研究。
阿廷猜想,是一个数论领域范畴的猜想,和质数的分步规律有关,内容是任何一个既不是平方数也不是-1的整数都是无穷多个质数的原根。
以此就有了‘阿廷常数’,阿廷常数的定义是这样的--
如果这个整数不是次方数,而且他的无平方因数部分除以4的余数也不是1,则这些质数在质数集合中的密度为0.3739558136。
这就是阿廷常数。
阿廷猜想是一个没有证明的数学猜想,和素数分布规律有关的阿廷常数,自然也是一个未证明的数值,甚至是否存在都不确定。
王浩则是证明了‘素数原根规律’的存在性,同时,证明常数的范围是在0.37~0.38之间。
这个常数是否就是‘0.3739558136’并不确定,但也给划定了‘0.37~0.38’的范围。
类似证明的意义,就像是弱化孪生素数猜想,间隔为‘2’的素数叫做孪生素数猜想,要证明孪生素数有无限多个,就可以变换为论证‘间隔为N的质数有无限多个’。
当N=2,孪生素数猜想自然就是成立的。
现在也很类似。
王浩证明了常数的范围是在0.37~0.38之间,只要不断的缩小范围,慢慢的就可能会接近‘0.3739558136’,若是中途发现‘0.3739558136’不在范围内,阿廷猜想自然就是错误的。
其他数学家就可以添加其他论证方式,来不断缩小论证的范围。
后续的工作对王浩并不重要,其他人以他的方法,哪怕是证明了阿廷猜想,他也能拿到最大份的功勋。
所以他才会说‘已经够了’。
本章已完成!