默认冷灰
24号文字
方正启体

第四百四十一章 核聚变的‘不完善磁约束’,能者多劳?能者担责!(1/2)

作者:不吃小南瓜
“我们什么时候拥有如此高端的技术了?”
“完善的点火技术,到底是什么?如果真有这样的技术,就直接解决个大难题啊!”
“点火确实太重要了。”
“说是‘完善’,这种技术能实现氘氘点火吗?”
“那不太可能吧?”
“什么样的技术,具体原理是什么?”
“……”
在徐老师点头认可汤建军的说法后,台下的学者们一片讨论之声,他们实在是太惊讶了。
核聚变的点火就是最大的难题之一。
他们想不到有什么点火技术能够被称作是‘完美’,全都就忍不住讨论起来,能参加会议的学者们都有很高的能力水平。
很快。
有学者想到了湮灭力场,“能称作完美的点火技术,只能有两个方向,一个是超导方向,以超导技术制造难以想象的高磁场,和其他技术关联在一起来实现点火……”
“另一个方向更有可能,就是强湮灭力场,强湮灭力场可以大大增加例子活跃性。”
“我觉得这项技术很可能是强湮灭力场的控制,现在的湮灭力场容器外层有强湮灭力场,是不是能让强湮灭力场向内收缩?”
“等反应被激发以后,再控制向外扩散……”
这个想法已经很接近了。
那些不知道f射线的学者,当然不可能想到强湮灭力场能通过射线的方式激发出来。
有些知道f射线的学者,知道其高度保密性也不会多说。
学者们议论纷纷。
会场的气氛明显活跃起来。
在会议开始之前,绝大部分学者只是当成了交流会,而不是很正式的工程项目论证会议,因为他们并不看好可控核聚变的研究。
既然大多数人都不看好,可控核聚变的研究自然无法展开。
他们只把会当成是个学术交流会。
来到这里参加会议的同时,和其他的学者交流一下,有些熟悉的人凑在一起热闹一下。
等等。
现在就不一样了。
一项‘完善’的核聚变点火技术,解决了核聚变研究的一大难关,他们忽然感觉核聚变研究工程还是有希望的。
很多人也认真起来。
核聚变的点火技术确实是非常重要,听起来就只是进行点火,但要达到点火条件非常不容易。
点火也就是让核聚变反应能够实现自我维持,常规的手段是将氘和氚等离子体加热到一亿摄氏度以上。
除了高温外,还需要提供高压,以增加轻原子核之间的碰撞概率。
一般认为,要达到点火条件,需要将氘和氚等离子体压缩到每立方米约10^20个原子,相当于将一公斤的物质压缩到一个鸡蛋大小。
如果是氘和氘的反应,点火的要求就更高了,实现温度最低也需要十亿摄氏度。
学者们听到了新技术,也感觉有了信心。
等会场里稍稍安静了一些,汤建军才继续讲了起来,他跳过了点火技术,说到了《磁场环境制造以及反应控制》。
这个问题包含的内容非常多。
如果做一个简单的总结,可以理解为‘为实现能量输出大于输入’所做出的论证。
可控核聚变的另一大难点,就是‘实现输出大于输入’。
这一点也是核聚变研究的基本工程目标,只有能够达到输出大于输入的目标,一切的研究讨论才会有意义。
‘实现输出大于输入’的研究,可以追朔到上个世纪五十年代所提出wson判据。
这和托卡马克装置有关。
在托卡马克装置的完全磁约束环境下,磁场的强弱决定了密度和温度的上限,装置的大小则决定了约束时间的上限。
那么是否能够实现输出大于输入,决定性的因素就是‘磁场强度’和‘装置大小’。
汤建军谈到的《磁场环境制造以及反应控制》,是对于现有基础技术的说明,其中包括超导材料、一阶铁材料以及相应材料支持制造的高磁场。
总之,关键在于材料。
会场内的学者们都听明白了,简单来说就是一阶材料支持下,超导材料技术有了很大提升,能够制造更高强度的磁场。
另外,磁场发生的制造技术也有了提升。
在有关升阶超导材料的研发上,汤建军只是进行了简单介绍,毕竟他不是材料领域的专家。
等汤建军说完了自己的部分,他就把时间留给了赵甲荣。
赵甲荣是超导材料研究中心的副主任,他介绍起了超导材料的研究中心最新的成果。
“我们研究发现了一种新型超导材料,命名为cwf-021,这种材料所能承载的电流电流非常高,大概是铌钛合金的三倍以上。”
“另外,通过一系列的实验,我们认为把其中的碳元素换成一阶碳,会让cwf-021具有更强的熔点和韧性。”
“这方面还在进行研究……”
“……”
赵甲荣所做的报告也非常震撼。
很多强磁场发生装置使用的超导材料都是铌钛合金,铌钛合金承载的电流强度上限非常高,也就代表激发的磁场强度高。
现在研究出了一种新材料,承载的电流强度上限比铌钛合金高出三倍以上,也就代表能够制造的磁场强度会高很多。
这种材料技术突破,能给核聚变研究打下坚实的基础。
在赵甲荣做完报告以后,会场给了学者们讨论休息时间,然后王浩就在所有人的关注下走上了台。
本小章还未完,请点击下一页继续阅读后面精彩内容!会场顿时安静下来。
很多人都期待王浩的发言,王浩肯定是项目主导人之一,也是世界最有影响力的科学家。
他们都想知道王浩会说些什么。
王浩也对发言有准备,大屏幕上出现了ppt,但标题就只有四个字--《反应容器》。
“我所要讲的就是反应容器。”
“大家应该都知道,我们论证的核聚变研究会使用湮灭力场技术,湮灭力场技术结合托卡马克装置,就是核聚变反应最适合的容器。”
“但是,好多人对此的理解很浅显,我在这里就认真的讲一下。”
王浩快速进入主题,“我们所制造强湮灭力场,外层使用了磁干涉手段,和托卡马克的磁约束方式是类似的……”
“这种磁干涉手段也可以和托卡马克的磁发生装置叠加使用。”
“也就是一套磁场设备,可以用来干涉强湮灭力场,同时也可以用来约束内部的核聚变反应。”
“这是其中一点。”
“另外,我们并不需要托卡马克的完全磁约束……”
他讲到了重点。
这一句话说出来,就让很多学者瞪大了眼睛,国际上有关核聚变的研究都围绕托卡马克装置,而托卡马克装置是进行完全的磁约束,也就是螺旋磁场形成一个闭合循环。
现在王浩说不需要‘完全磁约束’,等于说是不需要‘闭环磁场’。
这是全新的技术理论。
王浩认真道,“我的想法是以磁约束的空当,作为装置的主要输出端。如果磁约束有空当,肯定会承受非常大的压力。”
“但是,装置内部是反重力场。”
“大家知道,强反重力场最高能把粒子活跃度降低一倍,反应速度则能降低三倍,甚至四倍以上。”
“这样,我们就能通过调整内部反重力场强度,来对内部聚变反应的速率进行控制。”
“外层,则有吸收能量的强湮灭力场。”
“输出端要承受很大的压力,中子撞击,a粒子的影响都是问题,所以还需要结合高端材料……”
“丁宗权教授的团队,研究出一种升阶高熔点、韧性的铁钨材料,熔点达到了4380摄氏度……”
后续都是有关材料以及其他技术的介绍。
王浩对于反应容器的介绍,主要就是说明磁场、反重力场以及强湮灭力场对于核聚变反应的协调控制。
他还提出了‘不完善磁约束’的想法。
托卡马克装置是利用磁场对于反应进行完全控制,同时,也带来了一系列问题。
比如,温度控制。
比如,原料问题。
托卡马克的完全磁约束限制了反应速率,使得氘氘反应变得‘几乎不可能’,只是点火都是个大难题。
现在已经解决了点火问题,剩下的就是反应效率问题了。
氘氘反应,是核聚变的最佳选择。
原因很简单,自然界几乎不存在天然的氚,人工制造的成本高昂、产量极为有限。
氘则不受限制,海水中就大量存在。
核聚变之所以能够被称为无限能源,是因为海水中的氘对人类来说,几乎是“无限的”。
‘不完善磁约束’的设计,还有一个好处就是解决了a粒子问题。
核聚变反应会产生a粒子。
a粒子是带电粒子,自然会受到磁场影响。
在完全磁约束的环境下,a粒子又是一种需要被去除的杂质,否则会降低聚变反应率。
‘不完善磁约束’环境,磁场就会‘有出口’,a粒子就能够被排出。
……
上午的会议结束了。
每一个参会的学者的积极性都被调动起来,他们不断讨论着会议中的内容,包括完善的点火技术,包括超导材料技术的突破,也包括王浩的‘不完善磁约束’设计想法。
“虽然还有很多需要攻克的难关,但是能实现‘不完善磁约束’,就解决了大部分难题,已经有了主核心方向。”
“‘不完善磁约束’,也会带来新的问题,输出端口的压力会非常大。”
“即便是有反重力场、有强湮灭力场,也很难实现常规的输出……”
“内部高爆发的能量,集中在出口……”
“……”
学者们不断讨论的过程中,话题很快就转到了最关键的材料技术。
很多技术问题都可以用高端材料解决,但是材料技术是最困难的领域之一,想要有一系列突破非常困难。
即便还有很多技术难关,学者们对于论证也多了信心。
现在只是进行第一次论证会,就解决了很多的问题,继续研究再进行论证,一些问题可能就会有解决方案。
这就是论证的目的。
一个大型工程型研究项目,必须要做非常详细的论证,以保证研究不会碰到无法攻克的技术难题。
下午的会议还是继续做报告。
这时候,也有其他的专家学者发言,也有人提出了问题,比如,输出端口的能量转化问题。
核聚变的输出也是个大问题。
从输出的角度上来讲,中子的能量转化为可被利用的热能的效率是有限的,而热力发电本身的效率非常低。
怎么样实现最大化功率输出,是必须要详细论证的内容。
论证会提出了一些问题,解决了一些问题,也出现了新的问题,但不管怎么说,会议达到了预期效果。
等会议结束以后,后续还会一起讨论三天时间。
这一段时间,就供学者们讨论交流了。
这章没有结束,请点击下一页继续阅读!王浩则是和徐老师坐在一起,他们继续谈着核聚变的研究项目,但内容不是说技术问题。
徐老师是想找点信心,他苦笑道,“王浩啊,核聚变项目实在太难了,我都没有想到,有生之年还能负责这种项目的论证。”
他说话的时候,还不断抓着头皮。
徐老师的压力确实很大。
核聚变项目实在太重大了,每一个高端决策人都会关注,他是项目论证的直接负责人,也拥有开启项目的决策权。
如果决定正式开启项目,压力就会变得更大。
研究成功,历史自然会记下浓重的一
本章未完,请翻下一页继续阅读.........
(←快捷键) <<上一章 投推荐票 回目录 标记书签 下一页>> (快捷键→)