海尔,马丁-海尔也围着罗大勇听了几句,结果就是听了一头雾水。
现在听到王浩的讲解,逻辑上也和昨天那个人差不多,结果跟着一想就明白过来了。
为什么呢?
“可能是昨天听了一遍,再听一遍就理解了,这种复杂性问题就是要多思考,多听……”
马丁-海尔想着。
其他人也只能得出类似的结论,理解了王浩讲解的难点以后,其他就根本算不上问题了。
马丁-海尔发现自己不用再听了,他早就已经弄明白其他内容,就干脆翘起了腿左右看着其他人,终于发现旁边的陶哲轩,也没有再继续认真听。
他顿时小声说道,“特里,你也弄懂了吧?真是没想到,NS方程问题就这样解决了,我还以为这个问题要再持续几十年呢。”
陶哲轩笑道,“我也没有想到。我在这个问题上也研究过,但只是想用一种方法进行描述,而不是真正去证明它的光滑性,就像是蒙日-安倍方程,总是在一定条件下才能够有结论。”
“结果更加重大的NS方程问题,竟然会比蒙日-安倍方程更快被证明。”
马丁-海尔笑道,“在蒙日-安倍方程问题上,台上的年轻人也是专家,上一个有关的研究也是他做出的。”
“是啊。”
陶哲轩也跟着感叹的点头,“他是那种难以琢磨的天才。”
他是依靠数论的研究获得的菲尔兹奖,后来就开始从事其他领域的研究,包括调和分析、非线性偏微分方程、组合论等等,研究横跨多个数学分支领域。
陶哲轩也发现一个问题,跨多领域进行研究的时候,就很难再专注于一项研究,因为单独的思考,可能会被其他领域的思考所影响。
这也是很多数学家只专注于单一领域研究的原因之一。
很少有数学家可以在多领域研究,都能够取得很大的成果。
现在台上的年轻人,却似乎打破了这一定律,数论和偏微分方程就是两个不同的领域,而且相关性非常低,结果对方都取得了惊人的成果。
哥德巴赫猜想。
NS方程。
这是两个不同学科,没有任何相关性的问题。
在短短的一年时间,对方就完成了两项重大研究,都可以说是不可理解,陶哲轩一直认为自己是天才,外界对他的评价也是如此。
现在看着台上的王浩,他发现自己也变得很普通。
……
其实在做报告之前,王浩对于报告也是有些担心的,因为他的计算逻辑太过于复杂,而台下大多对于复杂性理论没有涉猎。
就像是昨罗大勇遇到的情况,认真讲解了好半天,很少能有人完全听懂。
看着台下学者们的反应,尤其是几个顶级数学家,都开始分散注意力的小声聊天,他就知道自己已经成功了,最少顶级学者们已经理解了。
针对一项全新研究的报告来说,评审相关的学者明白就足够了。
不过王浩还是希望更多人能理解,他继续就计算逻辑中的难点进行分析,还针对一些小难点进行了讲解。
他希望能确保最少一半的人能够听明白。
在讲解了有两个小时以后,王浩从头开始做了一遍梳理,一直到了最后的逻辑分析,就进入到了计算的内容。
这个时候,很多人都知道,王浩的证明确实已经完成了。
有人甚至忍不住想提前鼓掌,因为后续内容没有太过复杂,即便是自己去研究也能够理解。
王浩还是讲了一遍。
在所有人的注视中,他认真完成了剩余过程,最后在白板上写了一个列式,“所以,我们能通过第七则由式,以及引理2、引理6以及引理11,得出方程的各个参数,每一项都可以取无穷,而不影响既定的证明。”
“完毕!”
王浩放下了手里的笔,转过身面对所有人。
会议厅也安静了一瞬。
王浩弄了一下,干脆重复了一遍,“我的证明已经结束了,如果有问题可以提出来,剩下都是答疑时间。”
这时,台下才响起了掌声。
第一个用力鼓掌的是潘卫国,后面紧跟着是罗大勇、周清源,还有其他熟悉认识的人,再然后掌声慢慢传播开来,也变得越来越大。
台下每个人的心情都不平静,他们亲眼见证了NS方程问题被证明。
在1831年,泊松提出可压缩流体的运动方程,也就是NS方程的起源。后续的二十年时间里,ns方程经历过两次修正,而方程的主要功能就是做应用相关的计算。
这是一个和应用直接关联的偏微分方程。
因为NS方程应用广泛,数学界一直希望能验证其稳定性,也就是给予应用方面完善的理论支持。
从问题被提出时算起,到现在已经超过百年时间,无数数学家投入很大精力去研究。
一直到现在。
这个千禧年数学难题之一,被认为是动力学领域的基石,终于成功被证明出来。
每个人的心里都有诸多的感慨,会议厅则完全被激烈的掌声占满。
这是历史性的一刻!
(求月票)
才发现有双倍月票~~~月底了,求一下月票~~
本章已完成!